Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Ozan Catal
Animal Ai Env
Commits
77736475
Commit
77736475
authored
Apr 30, 2019
by
Benjamin Beyret
Browse files
v0.1 init
parents
Changes
85
Hide whitespace changes
Inline
Side-by-side
.gitignore
0 → 100644
View file @
77736475
envs/*
/models
/summaries
/.idea
__pycache__/
README.md
0 → 100644
View file @
77736475
# Animal-AI Olympics
## Overview
Welcome to the repository for the Animal-AI Olympics competition where you will find all the code needed to compete in
this new challenge. Currently we have only released the environment (v0.1) that will be used for the competition.
The competition itself goes live at the end of June and until then we will be updating with bug fixes and small changes
to environment. For more information on the competition itself, head to the
[
Competition Website
](
http://www.animalaiolympics.com/
)
.
The environment is made of an agent enclosed in a fixed sized arena. Objects can spawn in this arena, including positive and
negative rewards. The
**main idea of this environment**
is that all tests we will evaluate your agents on can be reproduced
using the obejcts provided in the training environment. All cognitive skills can be tested using this setup. Therefore,
the challenge is to
**design both a learning environment as well as an learning agent**
in order to perform well on the
tests. You can train several agents in parallel.
The goal of this first release is to get feedback from the community. The final design of the environment itself will be
very similar to this one, however we are open to suggestion and especially bugs report! Head over the the
[
issues page
](
https://github.com/beyretb/AnimalAI/issues
)
and open a ticket using the
`suggestion`
or
`bug`
labels
respectively.
To get started install the requirements below, and then follow the
[
Quick Start Guide
](
documentation/quickstart.md
)
.
A more in depth documentation
<!--, including a primer on animal cognition,-->
can be found on the
[
Documentation Page
](
documentation/documentation.md
)
.
## Requirements
The Animal-AI package works on most platforms. Below is the basic installation on Ubuntu. Description for
other platforms coming soon.
<!--, for cloud engines check out [this cloud documentation](documentation/cloud.md).-->
First of all your will need
`python3.6`
installed. You will find a list of requirements in the
`requirements*.txt`
files.
Using
`pip`
you can run:
on Linux and mac:
```
pip install -r requirementsOthers.txt
```
on windows:
```
pip install -r requirementsWindows.txt
```
You will need to download the environment for your system:
| OS | Environment link |
| --- | --- |
| Linux |
[
download here
](
https://www.doc.ic.ac.uk/~bb1010/animalAI/env_linux.zip
)
|
| MacOS | coming soon |
| Windows |
[
download here
](
https://www.doc.ic.ac.uk/~bb1010/animalAI/env_windows.zip
)
|
You can now unzip the content of the archive to the
`env`
folder and you're ready to go! Head over to
[
Quick Start Guide
](
documentation/quickstart.md
)
for a quick overview of how the environment works.
## Manual Control
If you launch the environment directly from the executable or through the VisualizeArena script it will launch in player
mode. Here you can control the agent with the following:
| Keyboard Key | Action |
| --- | --- |
| W | move agent forwards |
| S | move agent backwards|
| A | turn agent left |
| D | turn agent right |
| C | switch camera |
| R | reset environment |
## Unity ML-Agents
The Animal-AI Olympics was built using
[
Unity's ML-Agents Toolkit.
](
https://github.com/Unity-Technologies/ml-agents
)
The Python library located in
[
animalai
](
animalai
)
is almost identical to
[
ml-agents v0.7
](
https://github.com/Unity-Technologies/ml-agents/tree/master/ml-agents-envs
)
. We only added the possibility
to change the configuration of arenas between episodes. For any issue not related to this feature please refer to the
documentation
[
here
](
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Python-API.md
)
Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for
Intelligent Agents.
*arXiv preprint arXiv:1809.02627*
## Version History
v0.1 - Initial Release
animalai/__init__.py
0 → 100644
View file @
77736475
animalai/communicator_objects/__init__.py
0 → 100644
View file @
77736475
from
.agent_action_proto_pb2
import
*
from
.agent_info_proto_pb2
import
*
from
.arena_parameters_proto_pb2
import
*
from
.brain_parameters_proto_pb2
import
*
from
.command_proto_pb2
import
*
from
.demonstration_meta_proto_pb2
import
*
from
.engine_configuration_proto_pb2
import
*
from
.header_pb2
import
*
from
.__init__
import
*
from
.resolution_proto_pb2
import
*
from
.space_type_proto_pb2
import
*
from
.unity_input_pb2
import
*
from
.unity_message_pb2
import
*
from
.unity_output_pb2
import
*
from
.unity_rl_initialization_input_pb2
import
*
from
.unity_rl_initialization_output_pb2
import
*
from
.unity_rl_input_pb2
import
*
from
.unity_rl_output_pb2
import
*
from
.unity_rl_reset_input_pb2
import
*
from
.unity_rl_reset_output_pb2
import
*
from
.unity_to_external_pb2_grpc
import
*
from
.unity_to_external_pb2
import
*
animalai/communicator_objects/agent_action_proto_pb2.py
0 → 100644
View file @
77736475
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: animalai/communicator_objects/agent_action_proto.proto
import
sys
_b
=
sys
.
version_info
[
0
]
<
3
and
(
lambda
x
:
x
)
or
(
lambda
x
:
x
.
encode
(
'latin1'
))
from
google.protobuf
import
descriptor
as
_descriptor
from
google.protobuf
import
message
as
_message
from
google.protobuf
import
reflection
as
_reflection
from
google.protobuf
import
symbol_database
as
_symbol_database
# @@protoc_insertion_point(imports)
_sym_db
=
_symbol_database
.
Default
()
DESCRIPTOR
=
_descriptor
.
FileDescriptor
(
name
=
'animalai/communicator_objects/agent_action_proto.proto'
,
package
=
'communicator_objects'
,
syntax
=
'proto3'
,
serialized_options
=
_b
(
'
\252\002\034
MLAgents.CommunicatorObjects'
),
serialized_pb
=
_b
(
'
\n
6animalai/communicator_objects/agent_action_proto.proto
\x12\x14\x63
ommunicator_objects
\"
a
\n\x10\x41
gentActionProto
\x12\x16\n\x0e
vector_actions
\x18\x01
\x03
(
\x02\x12\x14\n\x0c
text_actions
\x18\x02
\x01
(
\t\x12\x10\n\x08
memories
\x18\x03
\x03
(
\x02\x12\r\n\x05
value
\x18\x04
\x01
(
\x02\x42\x1f\xaa\x02\x1c
MLAgents.CommunicatorObjectsb
\x06
proto3'
)
)
_AGENTACTIONPROTO
=
_descriptor
.
Descriptor
(
name
=
'AgentActionProto'
,
full_name
=
'communicator_objects.AgentActionProto'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'vector_actions'
,
full_name
=
'communicator_objects.AgentActionProto.vector_actions'
,
index
=
0
,
number
=
1
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'text_actions'
,
full_name
=
'communicator_objects.AgentActionProto.text_actions'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
).
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'memories'
,
full_name
=
'communicator_objects.AgentActionProto.memories'
,
index
=
2
,
number
=
3
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'value'
,
full_name
=
'communicator_objects.AgentActionProto.value'
,
index
=
3
,
number
=
4
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
float
(
0
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
nested_types
=
[],
enum_types
=
[
],
serialized_options
=
None
,
is_extendable
=
False
,
syntax
=
'proto3'
,
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
80
,
serialized_end
=
177
,
)
DESCRIPTOR
.
message_types_by_name
[
'AgentActionProto'
]
=
_AGENTACTIONPROTO
_sym_db
.
RegisterFileDescriptor
(
DESCRIPTOR
)
AgentActionProto
=
_reflection
.
GeneratedProtocolMessageType
(
'AgentActionProto'
,
(
_message
.
Message
,),
{
'DESCRIPTOR'
:
_AGENTACTIONPROTO
,
'__module__'
:
'animalai.communicator_objects.agent_action_proto_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.AgentActionProto)
})
_sym_db
.
RegisterMessage
(
AgentActionProto
)
DESCRIPTOR
.
_options
=
None
# @@protoc_insertion_point(module_scope)
animalai/communicator_objects/agent_info_proto_pb2.py
0 → 100644
View file @
77736475
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: animalai/communicator_objects/agent_info_proto.proto
import
sys
_b
=
sys
.
version_info
[
0
]
<
3
and
(
lambda
x
:
x
)
or
(
lambda
x
:
x
.
encode
(
'latin1'
))
from
google.protobuf
import
descriptor
as
_descriptor
from
google.protobuf
import
message
as
_message
from
google.protobuf
import
reflection
as
_reflection
from
google.protobuf
import
symbol_database
as
_symbol_database
# @@protoc_insertion_point(imports)
_sym_db
=
_symbol_database
.
Default
()
DESCRIPTOR
=
_descriptor
.
FileDescriptor
(
name
=
'animalai/communicator_objects/agent_info_proto.proto'
,
package
=
'communicator_objects'
,
syntax
=
'proto3'
,
serialized_options
=
_b
(
'
\252\002\034
MLAgents.CommunicatorObjects'
),
serialized_pb
=
_b
(
'
\n
4animalai/communicator_objects/agent_info_proto.proto
\x12\x14\x63
ommunicator_objects
\"\x92\x02\n\x0e\x41
gentInfoProto
\x12\"\n\x1a
stacked_vector_observation
\x18\x01
\x03
(
\x02\x12\x1b\n\x13
visual_observations
\x18\x02
\x03
(
\x0c\x12\x18\n\x10
text_observation
\x18\x03
\x01
(
\t\x12\x1d\n\x15
stored_vector_actions
\x18\x04
\x03
(
\x02\x12\x1b\n\x13
stored_text_actions
\x18\x05
\x01
(
\t\x12\x10\n\x08
memories
\x18\x06
\x03
(
\x02\x12\x0e\n\x06
reward
\x18\x07
\x01
(
\x02\x12\x0c\n\x04\x64
one
\x18\x08
\x01
(
\x08\x12\x18\n\x10
max_step_reached
\x18\t
\x01
(
\x08\x12\n\n\x02
id
\x18\n
\x01
(
\x05\x12\x13\n\x0b\x61\x63
tion_mask
\x18\x0b
\x03
(
\x08\x42\x1f\xaa\x02\x1c
MLAgents.CommunicatorObjectsb
\x06
proto3'
)
)
_AGENTINFOPROTO
=
_descriptor
.
Descriptor
(
name
=
'AgentInfoProto'
,
full_name
=
'communicator_objects.AgentInfoProto'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'stacked_vector_observation'
,
full_name
=
'communicator_objects.AgentInfoProto.stacked_vector_observation'
,
index
=
0
,
number
=
1
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'visual_observations'
,
full_name
=
'communicator_objects.AgentInfoProto.visual_observations'
,
index
=
1
,
number
=
2
,
type
=
12
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'text_observation'
,
full_name
=
'communicator_objects.AgentInfoProto.text_observation'
,
index
=
2
,
number
=
3
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
).
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'stored_vector_actions'
,
full_name
=
'communicator_objects.AgentInfoProto.stored_vector_actions'
,
index
=
3
,
number
=
4
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'stored_text_actions'
,
full_name
=
'communicator_objects.AgentInfoProto.stored_text_actions'
,
index
=
4
,
number
=
5
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
).
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'memories'
,
full_name
=
'communicator_objects.AgentInfoProto.memories'
,
index
=
5
,
number
=
6
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'reward'
,
full_name
=
'communicator_objects.AgentInfoProto.reward'
,
index
=
6
,
number
=
7
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
float
(
0
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'done'
,
full_name
=
'communicator_objects.AgentInfoProto.done'
,
index
=
7
,
number
=
8
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'max_step_reached'
,
full_name
=
'communicator_objects.AgentInfoProto.max_step_reached'
,
index
=
8
,
number
=
9
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'id'
,
full_name
=
'communicator_objects.AgentInfoProto.id'
,
index
=
9
,
number
=
10
,
type
=
5
,
cpp_type
=
1
,
label
=
1
,
has_default_value
=
False
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'action_mask'
,
full_name
=
'communicator_objects.AgentInfoProto.action_mask'
,
index
=
10
,
number
=
11
,
type
=
8
,
cpp_type
=
7
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
nested_types
=
[],
enum_types
=
[
],
serialized_options
=
None
,
is_extendable
=
False
,
syntax
=
'proto3'
,
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
79
,
serialized_end
=
353
,
)
DESCRIPTOR
.
message_types_by_name
[
'AgentInfoProto'
]
=
_AGENTINFOPROTO
_sym_db
.
RegisterFileDescriptor
(
DESCRIPTOR
)
AgentInfoProto
=
_reflection
.
GeneratedProtocolMessageType
(
'AgentInfoProto'
,
(
_message
.
Message
,),
{
'DESCRIPTOR'
:
_AGENTINFOPROTO
,
'__module__'
:
'animalai.communicator_objects.agent_info_proto_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.AgentInfoProto)
})
_sym_db
.
RegisterMessage
(
AgentInfoProto
)
DESCRIPTOR
.
_options
=
None
# @@protoc_insertion_point(module_scope)
animalai/communicator_objects/arena_parameters_proto_pb2.py
0 → 100644
View file @
77736475
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: animalai/communicator_objects/arena_parameters_proto.proto
import
sys
_b
=
sys
.
version_info
[
0
]
<
3
and
(
lambda
x
:
x
)
or
(
lambda
x
:
x
.
encode
(
'latin1'
))
from
google.protobuf
import
descriptor
as
_descriptor
from
google.protobuf
import
message
as
_message
from
google.protobuf
import
reflection
as
_reflection
from
google.protobuf
import
symbol_database
as
_symbol_database
# @@protoc_insertion_point(imports)
_sym_db
=
_symbol_database
.
Default
()
DESCRIPTOR
=
_descriptor
.
FileDescriptor
(
name
=
'animalai/communicator_objects/arena_parameters_proto.proto'
,
package
=
'communicator_objects'
,
syntax
=
'proto3'
,
serialized_options
=
_b
(
'
\252\002\034
MLAgents.CommunicatorObjects'
),
serialized_pb
=
_b
(
'
\n
:animalai/communicator_objects/arena_parameters_proto.proto
\x12\x14\x63
ommunicator_objects
\"\xb0\x03\n\x14\x41
renaParametersProto
\x12\t\n\x01
t
\x18\x01
\x01
(
\x05\x12\x46\n\x05
items
\x18\x02
\x03
(
\x0b\x32\x37
.communicator_objects.ArenaParametersProto.ItemsToSpawn
\x12\x17\n\x0f
rand_all_colors
\x18\x03
\x01
(
\x08\x12\x16\n\x0e
rand_all_sizes
\x18\x04
\x01
(
\x08\x1a\x93\x02\n\x0c
ItemsToSpawn
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\x12\n\n
rand_color
\x18\x02
\x01
(
\x08\x12
R
\n\t
positions
\x18\x03
\x03
(
\x0b\x32
?.communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3
\x12\x11\n\t
rotations
\x18\x04
\x03
(
\x02\x12
N
\n\x05
sizes
\x18\x05
\x03
(
\x0b\x32
?.communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3
\x1a
*
\n\x07
Vector3
\x12\t\n\x01
x
\x18\x01
\x01
(
\x02\x12\t\n\x01
y
\x18\x02
\x01
(
\x02\x12\t\n\x01
z
\x18\x03
\x01
(
\x02\x42\x1f\xaa\x02\x1c
MLAgents.CommunicatorObjectsb
\x06
proto3'
)
)
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
=
_descriptor
.
Descriptor
(
name
=
'Vector3'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'x'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3.x'
,
index
=
0
,
number
=
1
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
float
(
0
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'y'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3.y'
,
index
=
1
,
number
=
2
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
float
(
0
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'z'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3.z'
,
index
=
2
,
number
=
3
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
float
(
0
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
nested_types
=
[],
enum_types
=
[
],
serialized_options
=
None
,
is_extendable
=
False
,
syntax
=
'proto3'
,
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
475
,
serialized_end
=
517
,
)
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
=
_descriptor
.
Descriptor
(
name
=
'ItemsToSpawn'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.name'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
).
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'rand_color'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.rand_color'
,
index
=
1
,
number
=
2
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'positions'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.positions'
,
index
=
2
,
number
=
3
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'rotations'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.rotations'
,
index
=
3
,
number
=
4
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'sizes'
,
full_name
=
'communicator_objects.ArenaParametersProto.ItemsToSpawn.sizes'
,
index
=
4
,
number
=
5
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
nested_types
=
[
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
,
],
enum_types
=
[
],
serialized_options
=
None
,
is_extendable
=
False
,
syntax
=
'proto3'
,
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
242
,
serialized_end
=
517
,
)
_ARENAPARAMETERSPROTO
=
_descriptor
.
Descriptor
(
name
=
'ArenaParametersProto'
,
full_name
=
'communicator_objects.ArenaParametersProto'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
't'
,
full_name
=
'communicator_objects.ArenaParametersProto.t'
,
index
=
0
,
number
=
1
,
type
=
5
,
cpp_type
=
1
,
label
=
1
,
has_default_value
=
False
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'items'
,
full_name
=
'communicator_objects.ArenaParametersProto.items'
,
index
=
1
,
number
=
2
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'rand_all_colors'
,
full_name
=
'communicator_objects.ArenaParametersProto.rand_all_colors'
,
index
=
2
,
number
=
3
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'rand_all_sizes'
,
full_name
=
'communicator_objects.ArenaParametersProto.rand_all_sizes'
,
index
=
3
,
number
=
4
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
nested_types
=
[
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
,
],
enum_types
=
[
],
serialized_options
=
None
,
is_extendable
=
False
,
syntax
=
'proto3'
,
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
85
,
serialized_end
=
517
,
)
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
.
containing_type
=
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
.
fields_by_name
[
'positions'
].
message_type
=
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
.
fields_by_name
[
'sizes'
].
message_type
=
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
.
containing_type
=
_ARENAPARAMETERSPROTO
_ARENAPARAMETERSPROTO
.
fields_by_name
[
'items'
].
message_type
=
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
DESCRIPTOR
.
message_types_by_name
[
'ArenaParametersProto'
]
=
_ARENAPARAMETERSPROTO
_sym_db
.
RegisterFileDescriptor
(
DESCRIPTOR
)
ArenaParametersProto
=
_reflection
.
GeneratedProtocolMessageType
(
'ArenaParametersProto'
,
(
_message
.
Message
,),
{
'ItemsToSpawn'
:
_reflection
.
GeneratedProtocolMessageType
(
'ItemsToSpawn'
,
(
_message
.
Message
,),
{
'Vector3'
:
_reflection
.
GeneratedProtocolMessageType
(
'Vector3'
,
(
_message
.
Message
,),
{
'DESCRIPTOR'
:
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN_VECTOR3
,
'__module__'
:
'animalai.communicator_objects.arena_parameters_proto_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.ArenaParametersProto.ItemsToSpawn.Vector3)
})
,
'DESCRIPTOR'
:
_ARENAPARAMETERSPROTO_ITEMSTOSPAWN
,
'__module__'
:
'animalai.communicator_objects.arena_parameters_proto_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.ArenaParametersProto.ItemsToSpawn)
})
,
'DESCRIPTOR'
:
_ARENAPARAMETERSPROTO
,
'__module__'
:
'animalai.communicator_objects.arena_parameters_proto_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.ArenaParametersProto)
})
_sym_db
.
RegisterMessage
(
ArenaParametersProto
)
_sym_db
.
RegisterMessage
(
ArenaParametersProto
.
ItemsToSpawn
)
_sym_db
.
RegisterMessage
(
ArenaParametersProto
.
ItemsToSpawn
.
Vector3
)
DESCRIPTOR
.
_options
=
None
# @@protoc_insertion_point(module_scope)
animalai/communicator_objects/brain_parameters_proto_pb2.py
0 → 100644
View file @
77736475
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: animalai/communicator_objects/brain_parameters_proto.proto
import
sys
_b
=
sys
.
version_info
[
0
]
<
3
and
(
lambda
x
:
x
)
or
(
lambda
x
:
x
.
encode
(
'latin1'
))
from
google.protobuf
import
descriptor
as
_descriptor
from
google.protobuf
import
message
as
_message