training_tutorial.ipynb 1.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Training simple\n",
    "\n",
    "The API provides both a [Unity ml-agents](https://github.com/Unity-Technologies/ml-agents) and an[OpenAI Gym](https://github.com/openai/gym) interfaces. We include training examples for both in [the examples folder](./examples), the former uses the ml-agents' own training library which is optimised for the environment, the latter uses [OpenAI baselines](https://github.com/openai/baselines).\n",
    "\n",
    "Our first training will aim at giving our agent the ability to simply collect \"food\" with nothing else in the environment. In your configuration file you can omit some parameters to randomize their values, for example:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}